

TETRA Tx Test Solution

Signal Analyzer MS2830A

Reference Specifications

ETSI EN 300 394-1 V3.3.1(2015-04) / Part1: Radio

ETSI TS 100 392-2 V3.6.1(2013-05) / Part2: Air Interface

May. 2016

[Anritsu] TETRA Tx Test Solution

Tx Evaluation

Multi-functions supported with one unit!

Unit, Module*

*Output in Test Mode

MX269017A Vector Modulation Analysis Software

Carrier Freq. 1000 000 000 Hz Input Level -10.00 dBm Prequency ATT 4 dB Result Measuring Prequency	▲ MS2830A Vector Modulation Analysis		3/10/2016 18:34:00
ATT 4 dB Result Measuring Numric 105.4 dBm TX Power 105.4 dBm Prequency Error 0.06 Hz 0.03 % 107 % Phase Error(peak) 0.01 dg 0.03 dg 107 % Phase Error(peak) 0.01 dg 0.03 dg 107 % Phase Error(peak) 0.01 dg 0.03 dg 107 % Phase Error(peak) 0.02 dg 0.03 dg 100 mg 10 Gain Imbalance 0.02 dg 0.02 dg 0.21 dg 10 Gain Imbalance 0.02 dg 0.02 dg 100 00 Phase 10 00 Phase v Symbol 1.00 02 500 0/c 10 00 Phase v Symbol 1.00 02 500 0/c 10 00 Phase v Symbol 1.00 02 500 0/c 10 00 Phase v Symbol 1.00 02 500 0/c 10 00 Phase v Symbol 1.00 02 500 0/c 10 00 Phase v Symbol 1.00 02 500 0/c 10 00 Phase v Symbol 1.00 02 500 0/c 10 00 Phase v Symbol 1.00 02 500 0/c	Carrier Freq. 1 000 000 000 Hz Input Level	-10.00 dBm	Vector Modulation A
Result Measuring Frequency Common Amplitude Tx Power -10.54 dBm -0.09 Hz -0.01 Hz -	ATT	4 dB	4
Numric -10.54 dBm TX Power -10.54 dBm Frequency Error 0.09 Hz 200 (print) 0.36 % PMase Error(trms) 0.18 deg. 107 (min) 0.19 % 0.00 rpin offset 0.26 dg. 200 (print) 0.21 deg. 100 (print) 0.23 % 100 (print) 0.23 % 100 (print) 0.23 % 100 (print) 0.21 deg. 100 (print) 0.23 % 100 (print) 0.21 deg. 100 (print)<			Frequency
Numeric -10.64 dBm Signal Montor 1. Power of Error 0.09 Mp 0.00 Mp 0.00 Mp EVM(pask) 1.07 % 0.00 Mp 0.00 Mp 0.00 Mp Phase Error(pask) 0.01 8 dgp 0.00 Mp 0.00 Mp<	Result Measuring		(requesto)
Tx Power -10.54 dBm 0.09 Hz 0.00 Hz	Numeric	Signal Manitar	4
Evel (genery Error 0.00 Hz 100 b 100 b </th <th>Tx Power -10.54 dBm</th> <th>Signal Monitor</th> <th>Amplitude</th>	Tx Power -10.54 dBm	Signal Monitor	Amplitude
EVM(pres) 0.38 % EVM(pres) 0.78 % Phase Error(ms) 0.18 deg. Phase Error(ms) 0.19 % Mag. Error(pres) 0.46 % Ordgin Offset 48856 de Quadrature Error 0.21 deg. EVM vs Symbol Mick Symbol 19.0 EVM 0.33 % France Vs Symbol Mick Symbol 19.0 Phase 30.18 deg. Trigger Tri	Frequency Error 0.09 Hz	-10.00	
EVM prexit 1.07 % -0.00	EVM(rms) 0.36 %	-20.00	
Phase Error(ms) 0.18 deg. Phase Error(ms) 0.19 deg. Mg. Error(ms) 0.19 %. Origin Offset 4.856 de Quadrature Error 0.21 deg. EVM vs Symbol 19.0 EVM 0.33 % Mick Symbol 19.0 EVM 0.33 % Final 200 deg. Trigger Trigger 100 deg. 100	EVM(peak) 1.07 %	-30.00	Common
Phase second provided and provi	Phase Error(rms) 0.18 deg.	-40.00	Catalian
Mag.Error(ms) 0.19 %. Vidg.Error(ms) 0.26 %. Quadrature Error 0.21 deg. EVM vs Symbol Phase vs Symbol MKR Symbol 19.0 EVM 50 0.00 db 50	Phase Error(peak) -0.61 deg.	-50.00	outing
NBB_C profile UBB 55 dB (0 Gam) mbalance UBB 55 dB (0 Gam) UBB 56 dB (0 Gam)	Mag. Error(rms) 0.19 %	-8000	4
Ungase Tested of B Quadrature Error 0.00 dB Quadrature Error 0.21 deg. EVM vs Symbol Phase vs Symbol MicR Symbol 1.000 Phase 500	Mag. Error(peak) 0.46 %	-1000	Measure
Underdure Error 0.21 deg. 100 025 000 //e 1.000 25 000 //e Market EVM vs Symbol 19.0 EVM 0.33 % MKR Symbol 1.000 //e 1.000 //e Market MKR Symbol 19.0 EVM 0.33 % MKR Symbol 19.000 //e 1.000 //e Market 100 19.0 EVM 0.33 % MKR Symbol 19.000 //e Market Mar	IO Gain Imbalance 0.00 dB	-90.00 (11) (11) (11) (11) (11) (11) (11) (1	
EVM v3 Symbol BW 375 000 0vc EVM v3 Symbol MKR Symbol 1.00 025 000 0vc EVM v3 Symbol 1.00 025 000 0vc Fhase v3 Symbol 1.00 025 000 0vc 1.00 000 0vc 1.00 000 0vc 1.00 000 0vc 1.00 0vc	Quadrature Error 0.21 deg		
EVM vs Symbol Phase vs Symbol MKR Symbol 19.00 Phase -90.18 deg. 100		0.999 975 000 GHz 1.000 025 000 GHz	
MKR Symbol 19.00 Phase 50.18 deg. 500	EVM vs Symbol	Phase vs Symbol	Marker
500 <th>MKR Symbol 19.0 EVM 0.33 %</th> <th>MKR Symbol 19,000 Phase -90,18 deg</th> <th></th>	MKR Symbol 19.0 EVM 0.33 %	MKR Symbol 19,000 Phase -90,18 deg	
300 300 400 <th></th> <th></th> <th>4</th>			4
210 220 121 200 122 200 122 200 127 207 17 207 17 207 17 207 17 207	5.00	The second s	Trigger
250 120 120 120 120 120 120 120 12	375	900	
200 100 100 100 100 100 100 100			
125 126 127 127 127 127 127 127 127 127	2.50		
1.20			Capture
100 100 <th>1.26</th> <td>-900</td> <td></td>	1.26	-900	
000 [P4:0] [P4:0] <th>and a statility when a strength a propherical</th> <th>A DELLA MARTINA DA LA POMOLA ANDA ANDA ANDA ANDA ANDA ANDA ANDA AN</th> <th>4</th>	and a statility when a strength a propherical	A DELLA MARTINA DA LA POMOLA ANDA ANDA ANDA ANDA ANDA ANDA ANDA AN	4
17 247 17 247 Ref.int Pre-Amp Off	000 TA A MAL WANT A MARKAN AND A MARKAN WANT AND		Accessory
Ref.Int Pre-Amp Off	17 24		
	Ref.Int Pre-Amp Off		

Spectrum Analyzer Spurious Emission Function

Class 7 is Transmitter parameter definitions and limits. Class 8 is Methods of measurement for transmitter parameter.

EN300 394-1 V3.3.1 (2015-04)		8. Methods of measurement for transmitter parameters	MS2830A
7.1 8.	l.1 1	Transmitter output power	
8.1	1.1	Transmitter output power for phase modulation	
	8.1.1.1	MS Transmitter output power for phase modulation	√ (MX269017A)
	8.1.1.2	BS Transmitter output power for phase modulation	√ (MX269017A)
7.1.2 8.2		Unwanted output power in non active transmit state	✓(Signal Analyzer)
7.1 8.	l.3 3	Adjacent channel power due to modulation	✓(Spectrum Analyzer)
7.1.4 8.4		Adjacent channel power due to switching transients	√(Spectrum Analyzer)
7.1.5 8.5		Unwanted emissions far from the carrier	✓(Spectrum Analyzer)
7.1.8 8.8		Transmitter intermodulation attenuation	
	8.8.1	MS Transmitter intermodulation attenuation	√(Spectrum Analyzer, Signal Generator)
	8.8.2	BS Transmitter intermodulation attenuation	✓(Spectrum Analyzer, Signal Generator)
	8.8.3	Intra BS transmitter intermodulation attenuation	✓(Spectrum Analyzer)

Vector Modulation Analysis [MX269017A] supports only TETRA Release 1 (π /4 DQPSK).

Class 7 is Transmitter parameter definitions and limits. Class 10 is Methods of measurement for transmitter parameter.

EN300 394-1 V3.3.1 (2015-04)		10. Methods of measurement for transmitter/receiver parameters	MS2830A	
7.3 10	3.1).1	Modulation accuracy		
	10.1.1	MS modulation accuracy for phase modulation √(MX269017A)		
	10.1.2	BS modulation accuracy for phase modulation	√ (MX269017A)	
	10.1.3	Vector error magnitude at symbol time for phase modulation	√ (MX269017A)	
7.3 10	3.2).2	Carrier frequency accuracy		
	10.2.1	MS carrier frequency accuracy for phase modulation	√ (MX269017A)	
	10.2.2	BS carrier frequency accuracy for phase modulation	√ (MX269017A)	

Vector Modulation Analysis [MX269017A] supports only TETRA Release 1 (π /4 DQPSK).

8.1 Transmitter output power

8.1.1.1 MS transmitter output power for phase modulation

8.1.1.2 BS transmitter output power for phase modulation

Output power for phase modulation

Limits:

within ±2.0 dB of the nominal value (normal test condition).

within +3.0 dB and -4.0 dB of the nominal value (extreme test conditions).

within ±2.5 dB of the MS power control levels. (The difference in level between adjacent power control levels shall be 5.0 dB ± 2.5 dB.)

8.1 Transmitter output power

8.1.1.1 MS transmitter output power for phase modulation

8.1.1.2 BS transmitter output power for phase modulation

RF Output power time mask (1/2)

Limits:

Figure 6.3: Transmit level versus time mask

Table 6.8: Transmit level versus time mask symbol durations (refer figure 6.3)

Burst Type	t1	t ₂	t3	
Control uplink	16	103	15	
Linearization uplink	119	0	15	
Linearization downlink	107	0	0	
Normal uplink	16	231 (see note)	15	
Discontinuous downlink	7	246 (see note)	7	
Continuous downlink	Unspecified	Unspecified	Unspecified	
NOTE: In the case of single slot transmission.				

$$L_{min} = -70 \text{ dBc or } L_{min} = -36 \text{ dBm}.$$

8.1 Transmitter output power 8.1.1.1 MS transmitter output power for phase modulation 8.1.1.2 BS transmitter output power for phase modulation

RF Output power time mask (2/2)

8.2 Unwanted output power in non active transmit state

Limits: -40 dBc (BS), -70 dBc (MS)

Transmitter under test RF Signal RF Signal RF Signal

The unwanted output power in non-active transmit state is the average power emitted by a BS operating in discontinuous mode or MS transmitter, as measured through the TETRA filter.

Unwanted output power in non active transmit state

8.3 Adjacent channel power due to modulation

during the useful part of the TETRA signal.

- NOTE 1: For certain burst types d and the guard period may be of length zero.
- NOTE 2: The active part of the burst is the period during which modulation symbols are present; it is longer than the useful part by an amount equal to the sum of the time necessary for symbol rise and decay.

8.3 Adjacent channel power due to modulation

Limits: below tables.

Table 7.1: Maximum adjacent channel power levels for MS power classes 4 and 4L

Frequency offset	Maximum level (normal test conditions)	Maximum level (extreme test conditions)
25 kHz	-55 dBc	-45 dBc
50 kHz	-70 dBc	-60 dBc
75 kHz	-70 dBc	-60 dBc

Table 7.2: Maximum adjacent channel power levels for other power classes

Frequency offset	Maximum level (normal test conditions)	Maximum level (extreme test conditions)
25 kHz	-60 dBc	-50 dBc
50 kHz	-70 dBc	-60 dBc
75 kHz	-70 dBc	-60 dBc

Table 7.3: Maximum adjacent channel power levels for frequencies above 700 MHz

Frequency offset	Maximum level (normal test conditions)	Maximum level (extreme test conditions)
25 kHz	-55 dBc	-45 dBc
50 kHz	-65 dBc	-55 dBc
75 kHz	-65 dBc (note 1)	-55 dBc (note 2)
75 kHz	-65 dBc (note 1)	-55 dBc (note 2)

NOTE 1: A level of -70 dBc shall apply for BS Power Classes 1, 2 and 3 and for MS Power Classes 1 and 1L.

NOTE 2: A level of -60 dBc shall apply for BS Power Classes 1, 2 and 3 and for MS Power Classes 1 and 1L.

Option MS2830A-066 greatly improves phase noise, especially at carrier offsets of 1 kHz to 100 kHz.

Freq. Offset	MS2830A-066 Measured data
25 kHz	-74 dBc
50 kHz	-82 dBc
75 kHz	-84 dBc

8.4 Adjacent channel power due to switching transients

Limits:

At a frequency offset of 25 kHz, shall not exceed -45 dBc for MS Power Classes 4 and 4L and -50 dBc for other Power Classes.

8.5 Unwanted emissions far from the carrier

The below measurement bandwidth is used to measure discrete spurious.

Table 8.4: Measurement bandwidths

Measurement frequency	Resolution bandwidth	Video bandwidth (note 1)		
9 kHz to 150 kHz	1 kHz	3 kHz		
150 kHz to 30 MHz	10 kHz	30 kHz		
30 MHz to 1 GHz (note 2)	100 kHz	300 kHz		
1 GHz to 4 GHz	1 MHz	3 MHz		
4 GHz to 12,75 GHz (note 3)	3 MHz			
NOTE 1: When using a conventional swept frequency spectrum analyser. NOTE 2: Excluding frequencies within f _{rb} of the carrier.				
NOTE 3: Only for equipment capab	Only for equipment capable of operating at frequencies greater than 470 MHz.			

Spurious Function [pre-installed]

8.5 Unwanted emissions far from the carrier

Discrete Spurious

Limits: -36 dBm/100 kHz (Frequency Range : 9 kHz to 1 GHz) -30 dBm/1 MHz (Frequency Range : 1 GHz to 4 GHz

or 1 GHz to 12.75 GHz (operating frequency is above 470 MHz))

Wideband noise

Limits: below tables.

Frequency offset	Maximum wideband noise level			
	MS Nominal power level ≤ PL 4 (1 W)	MS Nominal power levels from 1,8 W to 10 W and BS Nominal power levels ≤ 10 W	MS and BS Nominal power levels from 15 W to 40 W	
100 kHz to 250 kHz	-74 dBc	-74 dBc	-80 dBc	
250 kHz to 500 kHz	-80 dBc	-80 dBc	-85 dBc	
500 kHz to f _{rb}	-80 dBc	-85 dBc	-90 dBc	
> f _{rb} -100 dBc -100 dBc -100 dBc		-100 dBc		
NOTE: f _{rb} denotes the frequency offset corresponding to the near edge of the received band or 10 MHz				
whichever is greater. All levels are expressed in dBc relative to the actual transmitted power level, and in any case no limit tighter than -55 dBm for offsets $\leq f_{rb}$ or -70 dBm for offsets $> f_{rb}$ shall apply.				

Table 7.9: Wideband noise limits for frequencies above 700 MHz

Table 7.8: Wideband noise limits for frequencies below 700 MHz

Frequency off	set	Maximum wideband noise level		
		MS Nominal power level	MS Nominal power level	MS Nominal power level
		≤ PL 4 (1 W)	= PL 3 (3 W)	≥ PL 2L (5,6 W)
			or PL 3L (1,8 W)	BS (all classes)
100 kHz to 250 kHz		-75 dBc	-78 dBc	-80 dBc
250 kHz to 500 kHz		-80 dBc	-83 dBc	-85 dBc
500 kHz to f _{rb}		-80 dBc	-85 dBc	-90 dBc
> f _{rb} -100 dBc		-100 dBc	-100 dBc	-100 dBc
NOTE: f _{rb} deno	TE: f _{rb} denotes the frequency offset corresponding to the near edge of the received band or 5 MHz (10 MH			
for frequencies above 520 MHz) whichever is greater. All levels are expressed in dBc relative to the				
actual t	actual transmitted power level, and in any case no limit tighter than -55 dBm for offsets $\leq f_{rb}$ or -70 dBm			
for offs	for offsets $> f_{rb}$ shall apply.			

8.8 Transmitter intermodulation attenuation

8.8.1 MS Transmitter intermodulation attenuation 8.8.2 BS Transmitter intermodulation attenuation

MS Limits: at least 60 dB (measured in 30 kHz bandwidth). BS Limits: at least 70 dB (measured in 30 kHz bandwidth).

8.8 Transmitter intermodulation attenuation

8.8.3 Intra BS transmitter intermodulation attenuation

Limits: For all transmitters of a single TETRA BS, not exceed -60 dBc (measured in 30 kHz bandwidth).

10.1 Modulation accuracy

10.1.1 MS modulation accuracy for phase modulation 10.1.2 BS modulation accuracy for phase modulation

Limits: less than 10% (RMS), 30% (Peak)

10.1 Modulation accuracy

10.1.3 Vector error magnitude at symbol time for phase modulation Limits: Residual carrier magnitude shall be less than 5 % (-26 dB) in any burst.

10.2 Carrier frequency accuracy

10.2.1 MS carrier frequency accuracy for phase modulation 10.2.2 BS carrier frequency accuracy for phase modulation

MS Limits: within ±100 Hz. BS Limits: ±0.2ppm (up to 520 MHz), ±0.1ppm (above 520 MHz)

